How is TikTok using AI

¿Cómo utiliza TikTok la IA?

La Magia detrás del Algoritmo de TikTok

A diferencia de las plataformas de redes sociales tradicionales, TikTok, reconocida por su algoritmo hiper personalizado y adictivo, ofrece una experiencia de usuario adaptada a través de su feed ‘Para Ti’. En lugar de depender únicamente de likes, comentarios y seguidores, TikTok utiliza el aprendizaje automático (ML) para proporcionar contenido basado en el compromiso y la entrada del usuario. Este enfoque impulsado por la IA ha impulsado a TikTok a la cima, convirtiéndolo en la aplicación más descargada de 2021.

El Poder de Categorizar Contenido

La innovadora estrategia de contenido de TikTok depende en gran medida de los algoritmos de ML para obtener datos rápidos e informativos. Comienza analizando videos utilizando tres elementos: visión por computadora, procesamiento de lenguaje natural (NLP) y metadatos.

La visión por computadora, un proceso de aprendizaje profundo, utiliza redes neuronales para decodificar imágenes dentro de un video o foto. Con millones de imágenes etiquetadas a su disposición, el algoritmo puede entender y clasificar nuevas visuales, optimizando la categorización.

A continuación, el NLP traduce e interpreta el contenido de audio en un video. Después de extraer datos de audio, utiliza modelos de clasificación o agrupación para analizar la información, lo que permite al algoritmo discernir la audiencia más relevante para el contenido.

El último paso en el proceso de categorización de TikTok gira en torno a los metadatos proporcionados por los usuarios, como subtítulos y hashtags.

El Genio del Sistema de Recomendación

El algoritmo de recomendación de TikTok brilla en el feed ‘Para Ti’. Esta función crea una transmisión única de videos adaptada a los intereses de cada usuario, asegurando una experiencia personalizada. La categorización y clasificación de videos es solo una pieza del rompecabezas. TikTok también acumula datos de las interacciones de los usuarios en la aplicación, estudiando el tiempo de visualización y la tasa de reloj de videos particulares para mejorar aún más el compromiso del usuario.

El compromiso inicial del usuario ayuda al algoritmo de TikTok a aplicar filtrado basado en contenido, mostrando al usuario videos relevantes. Sin embargo, una vez que el algoritmo tiene suficientes datos de usuario, emplea el filtrado colaborativo para recomendar videos basados en el comportamiento de usuarios similares, similar a las prácticas de Netflix y Spotify.

Manteniéndose en Sintonía con las Tendencias y los Eventos Actuales

El motor de recomendación de TikTok también está influenciado por las tendencias en curso y los eventos actuales. A menudo presenta a los usuarios contenido aparentemente no relacionado, desviándose de su historial de visualización o preferencias, manteniendo a los usuarios al día con las nuevas tendencias e iniciando un nuevo ciclo de compromiso.

El Ascenso de TikTok: Un Testimonio del Aprendizaje Automático

Con más de mil millones de usuarios y el título del dominio web más popular del mundo en 2021, el ascenso de TikTok es un testimonio del poder de la utilización estratégica del ML. Su uso sofisticado del ML subraya el impacto de un algoritmo robusto y datos de calidad en la entrega de contenido atractivo para los usuarios, demostrando el potencial transformador de la IA en el ámbito de las redes sociales.

Leave A Comment